
J Eng Math (2010) 66:293–310
DOI 10.1007/s10665-009-9340-9

Ultrasound detection of externally induced microthrombi
cloud formation: a theoretical study

G. T. Guria · M. A. Herrero · K. E. Zlobina

Received: 1 December 2008 / Accepted: 23 September 2009 / Published online: 14 October 2009
© Springer Science+Business Media B.V. 2009

Abstract A mathematical model for the formation of microaggregates (microthrombi) of fibrin polymers in blood
flow is considered. It is assumed that the former are induced by an external source (which may be of inflammatory
or tumor nature) located in a tissue near the vessel. In either case, specific agents (e.g. cytokines) are emitted
from that pathological site. Such substances permeate through the vessel wall to act as primary activators of blood
coagulation. A mathematical criterion to describe the formation of an intravascular microthrombi cloud, which
is interpreted as an early indicator of subsequent macroscopic thrombi formation is discussed. Such criteria are
compared with available experimental detection tests for microthrombi cloud formation by means of ultrasound
techniques. Moreover, a similarity-type relation is proposed that links the location of the unfolding microthrombi
cloud and the place at which such primary activator reaches the vessel wall.

Keywords Coagulation equations · Numerical simulation · Similarity laws · Thrombi formation

1 Introduction

“Blood is a juice of very special kind”.1 Human blood is normally in a liquid state, which allows it to carry out
its main function: mass transport. However, under suitable conditions blood may experience strong polymerization
processes. As a matter of fact, its ability to undergo a localized, rapid phase transition to eventually produce elastic,

1Blut ist ein ganz besonderer Saft [1, Part I].

G. T. Guria · K. E. Zlobina (B)
National Research Center for Haematology, 125167 Moscow, Russia
e-mail: ksen@blood.ru

G. T. Guria
e-mail: guria@blood.ru

G. T. Guria
Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia

M. A. Herrero
IMI, Departamento de Matematica Aplicada, Facultad de Matematicas, Universidad Complutense, 28040 Madrid, Spain
e-mail: Miguel_Herrero@mat.ucm.es

123



294 G. T. Guria et al.

gel-like masses or thrombi is essential for survival. In this manner blood loss is quickly stopped in case of small
vessel injuries. This phase transition is controlled by a finely tuned set of biochemical reactions known as the blood
coagulation cascade [2–4], whose basic ingredients are well established nowadays (see Sect. 2 below).

The resulting product of the aforementioned cascade is thrombin, a key agent in the coagulation process. Under
the catalyzing action of thrombin, fibrin monomers are formed from inactive fibrinogen molecules that are always
present in blood at basal concentrations. Fibrin monomers then aggregate to form fibrin polymers, which in turn
provide a net that keeps inside a number of elements (as for instance platelets) which eventually give rise to solid
macroscopic objects known as thrombi. Several mathematical models have been developed to describe the kinetics
of thrombin generation [5–10], and the onset of the coagulation process that results in fibrin polymer production
[11,12]. On the other hand, early stages of fibrin polymerization, which may subsequently lead to fully developed
thrombi, can be acoustically detected in vivo [13,14] and in vitro [15,16] by means of ultrasound (US) devices.
Indeed, US imaging is known to display the so-called snowstorm patterns [16]. The latter represent microthrombi
clouds, in which any particular element has not yet reached a macroscopic size. Actually, it may well happen that
such a cloud is eventually disposed of by blood regulatory mechanisms, but in many cases its presence is known to
signal the onset of serious blood disorders [14,17,18]. As a matter of fact, the aim of developing novel diagnostic
methods to detect intravascular clot generation provides a motivation for the theoretical investigation to be presented
below.

More precisely, the main purpose of this work is to formulate and discuss a mathematical model for the early
stages of externally induced thrombi formation in blood flow. It is well known that blood coagulation in vivo may
be triggered by pathological processes that take place in nearby tissues [18–21]. As a matter of fact, a critical
health condition, known as Disseminated Intravascular Coagulation (DIC), which represents a major contribution
to cancer-induced mortality, can be placed in this setting [22,23]. In the model to be discussed below, we assume
coagulation to be triggered by substances (e.g. cytokines) being produced at a tissue source, that permeate to the
blood through the vessel wall. We shall investigate the relation between the propagation properties of these activating
substances and the extent of the induced intravascular coagulation processes. This will be done by means of numer-
ical simulations on a mathematical model, whose relation with the experimental detection techniques mentioned
above will be discussed in some detail. In particular, a power-law, similarity-like relation will be proposed for the
dependence between the location of an intravascular microthrombi cloud and that of an inducing tissue pathogen
source.

We conclude this Introduction by describing the plan of this paper. A key aspect of our approach consists in
characterizing the onset of a microthrombi cloud as an early nucleation stage of a sol–gel phase transition [11,12],
[24, Chaps. 2 and 7] in a fluid containing polymerizing monomers. Bearing this in mind, in Sect. 2 we introduce our
basic activation-polymerization system. In a previous work we have developed a homogeneous, space-independent
model of blood coagulation that takes into account both thrombin generation and fibrin polymerization [12]. We
now extend that model to a spatially distributed case. In particular, we consider blood coagulation in a vessel under
convective and diffusive mass transfer. We then describe in Sect. 3 how ultrasound (US) detection of microthrombi
formation can be modeled in mathematical terms. When doing so, we identify some useful functions related to the
polymerization process that can be associated to, and determined from, ultrasound devices.

In Sect. 4 we show how the model described in Sect. 2 can be used, in some cases, to track in a vessel a
microthrombi cloud which is generated by a source located in nearby tissue. To this end, we shall limit ourselves to
consideration of a system in two space dimensions, which describes transversal profiles of blood flow in a suitable
vessel subject to a convective velocity. We proceed further by deducing from that system a simplified model which
is amenable to efficient numerical simulation, while at the same time retaining key aspects of the process that need
to be accounted for. Moreover, the variables appearing in that simplified model are of paramount importance in
experimental thrombi detection by ultrasound (US) techniques, as observed in our previous Sect. 3. A number of
simulations are presented and discussed, which in particular suggest a similarity-type relation between suitable
variables that represent the location of an unfolding microthrombi cloud, and that of an external activator source
that triggers such process. We finally observe that we shall restrict ourselves here to consideration of slow blood
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velocities, which are known to normally occur in small blood vessels, as well as in large ones when some pathological
circumstances concur.

The results herein obtained hint at the possibility of developing a procedure to monitor tissue pathological pro-
cesses leading to intravascular blood coagulation by means of ultrasound techniques. A discussion on the results
obtained, the limitations of our approach, and possible future directions, is gathered in our concluding Sect. 5.

2 An activation-polymerization model

We next present our basic, space-dependent mathematical model for activated fibrin polymerization. To put it into
a suitable perspective, we first briefly recall some known aspects of the blood coagulation process.

As we already mentioned in the Introduction, blood coagulation is regulated by means of a set of biochemical
reactions, usually referred to as the Blood Coagulation Cascade (BCC), which involves a number of extremely
efficient positive and negative feedback loops. Two components are usually distinguished in such a cascade, namely
the so-called Extrinsic and Intrinsic pathways [4,5,25–27] which interact at various levels, and eventually converge
to produce thrombin. The latter is a key activating substance that acts on inactive fibrinogen to produce actively poly-
merizing fibrin molecules. Our current knowledge of the reactions involved in the BCC includes over thirty species,
and due to the complexity of its structure, it is customary to represent the BCC by means of (rather complicated)
graphic diagrams [4,5,16,26].

A mathematical description of the BCC requires a large number of differential equations, involving an even larger
set of kinetic parameters, so that the resulting system is often unwieldy for simulation purposes. Moreover, a degree
of uncertainty remains concerning the actual values of the parameters involved. On the other hand, maintaining a
high level of complexity in the model does not necessarily ensure a high accuracy in the results obtained from its
simulation. As a matter of fact, it is known that, even for models with a comparatively simple structure (say, no more
than five equations), the same kinetic curve of thrombin behavior may be derived from different sets of selected
kinetic constants [10]. In view of these remarks, the use of simplified models seems quite appropriate, as long as
the information derived form their analysis and simulation yield useful insight into the process under consideration.

Bearing these points in mind, and with a view towards describing the appearance of externally induced
microthrombi clouds in a vessel, we now propose a phenomenological model that takes into account the effects of
thrombin production, anticoagulant agents (i.e., inhibitory pathways), and fibrin polymer formation upon fibrinogen
activation [6,7,12] combined with mass-transport processes corresponding to diffusion and convection. This model
reads as follows:
∂θ

∂t
= αθ2

θ + θ0
− χ1θ − γ θϕ + κ + Dθ�θ − ∇(vθ), (2.1)

∂ϕ

∂t
= βθ

(
1 − ϕ

c

) (
1 +

(
ϕ

ϕ0

)2
)

− χ2ϕ + Dϕ�ϕ − ∇ (vϕ) , (2.2)

∂ Fg

∂t
= −kg Fgθ − εg

(
Fg − F0

g

)
+ Dg�Fg − ∇ (

vFg
)
, (2.3)

∂ F1

∂t
= kg Fgθ − kp F1

∞∑
i=1

a1i Fi + kb

∞∑
i=1

b1i Fi+1 − kr F1 + D1�F1 − ∇ (vF1) , (2.4)

∂ Fk

∂t
= kp

2

k−1∑
m=1

am(k−m)Fm Fk−m − kp Fk

∞∑
i=1

aki Fi + kb

∞∑
i=1

bki Fk+i

−kb

2

∑
i+ j=k

bi j Fk − kr Fk + Dk�Fk − ∇ (vFk) , k = 2, 3, . . . . (2.5)

In the previous set of equations, θ denotes the concentration of polymerization activator (thrombin), ϕ that of
an inhibitor (anticoagulant) which acts as an antagonist to the former, Fg stands for fibrinogen concentration, F1
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represents the concentration of fibrin monomers, and Fi denotes concentration of fibrin polymers with i components
(i-mers) where i = 2, 3,. . . On the other hand, v is the velocity of blood flow, and the various parameters appearing
in (2.1)–(2.5) correspond to kinetic reaction constants and diffusion coefficients. Note that space dependence is
explicitly included in (2.1)–(2.5). We next describe briefly the way in which system (2.1)–(2.5) has been derived.

To begin with, we remark that the equations (2.1)–(2.5) can be seen as consisting of two coupled modules rep-
resenting different processes. The first one, consisting in (2.1) and (2.2) yields a regulated production of thrombin,
which acts as an injection source in the second module, represented by (2.3)–(2.5). The latter accounts for the trans-
formation of fibrinogen into fibrin monomers (see (2.3)), which in turn undergo a polymerization process (cf. (2.4)
and (2.5)).

Consider the first module above. In our approach, Eqs. 2.1 and 2.2 provide a phenomenological reduction of
the whole set of reactions leading to thrombin production. This two-variable module, which can be thought of as
a minimal model of the biochemical cascade, was introduced in [6,7] in the space-independent case, and has an
activator–inhibitor structure, similar to that introduced by Turing in [28] and by Gierer and Meinhardt in [29] in the
linear and nonlinear cases, respectively (see [30, Chaps. 2 and 3], for a detailed discussion on the latter). The only
variables therein retained are, respectively, the concentration of thrombin and that of a generic inhibitor thereof.
The latter has to be understood as a substance representing an averaged effect of the negative feedback loops (in
which activated protein C is widely assumed to play a key role) that are in part activated by thrombin itself and in
turn control thrombin production [6–8].

Concerning the precise structure of these equations, note that (2.1) can be viewed as a modified KPP–Fisher
equation (see [31, Chap. 11.2], [32,33]). When θ � θ0, and v = 0 = γ = κ = 0, the resulting version of (2.1) is
such that any overcritical perturbation of the rest state leads to linear autocatalytic production of θ . On the other
hand, Eq. 2.2 corresponds to a different dynamics, this time of a bistable type, which is modulated by thrombin
concentration θ ; cf. the first term in the right in (2.2). Bistability in (2.2) describes a situation in which two stable
equilibria, separated by an unstable one, are possible. According to this picture a small perturbation in the smaller
stable state is quickly damped out, but a sufficiently large one switches the dynamics to a neighborhood of the larger
stable state. In this manner, the inhibitor limits the otherwise unbounded growth of thrombin through the effect of
the third term in the right-hand side of (2.1). The coupled system consisting of (2.1), (2.2) thus provides an example
of an excitable system, the latter being a basic building block in the modeling of biological processes; for a review,
see [34, Chap. 3, pp. 32–80]. The system (2.1)–(2.2) has been shown to reproduce key aspects of pattern formation
in blood coagulation, including in particular localization of haemostatic clot formation (see for instance [8,35]).
Excitability is readily shown from analysis of the phase portrait of the kinetic (i.e, space-independent) version of
the system (2.1)–(2.2); cf. [12].

The link between thrombin activation and fibrin polymerization is established by means of the fibrinogen equation
(2.3) in the second module of our system. Fibrinogen conversion acts in turn as a forcing term in the polymerization
equations (2.4), (2.5). We assume there that fibrin polymerization occurs in accordance with a standard coagulation–
fragmentation mechanism involving an infinite system of coupled nonlinear differential equations. The coagulation
part is described by means of the classical Smoluchowski formalism [36,37], [38, Chap. 8, pp. 222–248], except
for the fact that the coagulation coefficients ai j are of a Flory–Stockmayer type [11,39–41],

ai j = (( f − 2)i + 2) (( f − 2) j + 2) , i, j ≥ 1, (2.6)

where f denotes the functionality (related to the polymerization capability) of the monomers being considered. In
the case of fibrin, it is known that f = 4 [42]. Since this value is larger than two, the process under consideration can
eventually lead to a sol–gel phase transition, characterized by the onset at a finite time of a gel phase [39]. This is
often described in an informal, but illuminating, manner as an infinitely long molecule which is a sink for polymers
in the sol fraction which does not contribute back to the reaction [43]. Fragmentation effects are represented by the
coefficients bi j in (2.4), (2.5), which are introduced to include reversibility in the formation of polymer chains (see
[41] and [44] for more details). As observed in [12], where the space-independent version of system (2.1)–(2.5) has
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Fig. 1 Ultrasonic images of blood flow in a vessel a before and b after microthrombi formation. Reproduced from [16]

been studied, a relevant choice for the case under consideration consists in taking bi j to be constant. In particular,
the value

bi j = 2 (2.7)

is compatible with the so-called normalization condition for fragmentation [44] and will be retained henceforth.
Under such assumptions, the kinetic, space-independent version of (2.1)–(2.5) has been shown to develop polydis-
perse fibrin mixtures, that can lead to a sol–gel phase transition depending upon ranges of the associated parameters
[12].

Having described our basic model system, we now turn our attention to the way in which experimental information
on the process under consideration can be obtained.

3 Ultrasound detection of microthrombi formation

In recent times, an experimental method has been developed for early diagnostics of pathologies in blood coagu-
lation by means of ultrasound techniques [15,16]. The latter are widely used in clinical practice to determine the
structure and performance of internal organs. In short, the operating procedure consists in sending ultrasound (US)
waves to the selected target by means of a transducer (a device transforming electrical input into acoustic radiation),
and then measuring the resulting backscattering echo effects. In general, two-dimensional (termed B-mode) images
are obtained by means of a combination of echoes received along different straight lines [45].

When moving structures, such as microthrombi, are present in blood flow one has to deal with backscattered
signals arising from multiple moving scatterers. A common way to analyze such a situation consists in estimating
the integrated power of the Doppler shift spectrum [46, Chap. 10], [16]. In this manner, one eventually obtains
images as those shown in Fig. 1.

The onset of smoke-resembling clouds as seen in Fig. 2b corresponds to the presence of heterogeneities associ-
ated to microthrombi. This is sometimes referred to as a snowstorm pattern [14,18]. We maintain that the formation
of such structures corresponds to an early stage of blood coagulation, when fibrin monomers and short polymers (of
no more than about 0.1 mm in size) appear, but large aggregates have not been formed, and there is no macroscopic
fibrin gel yet.

We are interested in characterizing microthrombi detection by means of suitable functions (moments of polymer
concentrations) whose values can be obtained from analysis of the mathematical model described in the previous
section. More precisely, let us denote by Fn the concentration of fibrin polymers consisting of n monomer units.
Then the moment of order k (k = 0, 1, 2, . . .) of the polymer distribution is given by [12]:

Mk =
∞∑

n=1

nk Fn (3.1)

The distribution of moments thus obtained is an ordered one, so that M0 ≤ M1 ≤ M2 ≤ · · ·. The moment of
first order M1 represents the total normalized mass of polymer in the system. The second-order moment M2 is an
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Fig. 2 Representation of the spatial setting of the model. Region B corresponds to a blood vessel and region T corresponds to an
adjacent tissue region. The length of the blood vessel is Lx and its diameter is L y . The sizes of the tissue domain are Lx and Lt . There is
a blood flow inside the vessel, and its profile is schematically shown by arrows in the left part of region B. The tissue contains a source
of activation (the corresponding domain is indicated by a circle). The center of that source has coordinates (cx , cy)

indicator of the degree of polymerization of the process under consideration. The ratio M2/M1 is in turn related to
the “weight-averaged” molecular weight of polymer molecules [47, part 3.7]. More precisely, there holds:

〈µw〉 = m0
M2

M1
(3.2)

Where 〈µw〉 denotes the weight-averaged molecular weight of polymer molecules [47, Eq. 3.112], and m0 stands
for the mass of a single monomer unit. In isolated polymer systems displaying a sol–gel phase transition, a standard
criterion for gel formation consists in detecting a finite-time blow-up of the second moment M2, and the time at
which such singularity is formed is said to be the gelation time tg [39,40,48]. Note that, when there is neither
monomer injection nor deactivation, M1 remains constant for times t < tg , so that in accordance with (3.2) blow-up
for M2 and for 〈µw〉 are equivalent.

On the other hand, it is well known that wave scattering in solutions can be described in terms of the attenuation
coefficient (also known as turbidity coefficient in optics) χ , defined by means of the attenuation law:

I = I0e−χl (3.3)

where I0 and I are the intensities of incident and transmitted waves, and l is the average wavelength path of incident
waves [46, Chap. 10]. The attenuation coefficient is proportional to the averaged molecular weight 〈µw〉 and to the
mass concentration C , where C = NAm0 M1. More precisely (see [47, Eqs. 3.107 and 3.108]) one has:

χ = 8π

3
H(NAm0 M1) 〈µw〉 (3.4)

where:

H = 4π2n2
0

λ4 NA

(
dn

dC

)2

; (3.5)

here n and n0 are the refractive indexes of solution and pure solvent, NA is Avogadro’s number, and λ is the signal
wavelength. Recalling (3.2), we observe that the attenuation coefficient is proportional to the second moment M2:

χ = const · 1

λ4 M2 (3.6)

with const = 8π/3 · (2πn0m0dn/dC)2. A relation between the second moment of the fibrin polymer distribution
and a parameter that can be measured by means of ultrasound techniques is thus obtained.

When using actual transducers, the backscattered attenuation observed depends on the technical specifications of
the device employed. In particular, for any transducer, a critical value of the attenuation coefficient χcr exists, which
is characterized as follows. If the medium has an attenuation coefficient larger than χcr, then backscattered effects
allow to identify absorbing structures in that medium, which correspond to a solution of particles having a second
moment larger than some critical value Mcr. This is obtained from χcr through (3.6). If, however, the attenuation
coefficient is lower than χcr, then such a medium appears as transparent. A typical value for the critical attenuation
coefficient is χcr < 10−3 cm−1 [46, Chap. 10].

123



Ultrasound detection of externally induced microthrombi cloud formation 299

4 On the location of an externally induced microthrombi cloud

In this section we shall complete the formulation of our mathematical model to account for externally induced
activation of fibrin polymerization, and analyze the way in which the details of a such process play a role in the
selection of critical values for the moments of polymer distributions.

4.1 Including external activation in the model

We will suppose that there is a substance, whose concentration is denoted by u, which is produced in a tissue, which
activates the cascade of thrombin production when it leaks into a blood vessel. This substance is generated as a
byproduct of a pathological process, is distributed in tissue by diffusion, and may go through the vessel wall to
appear in the blood flow, to act as primary activator of intravascular blood coagulation. The sources of such primary
activators may be tumor cells (producing cancer procoagulants [49]), bacteria, virus-infected cells or immune cells
of the organism. In the latter case leucocytes are known to produce cytokines, capable to reach into the blood
flow and to activate blood coagulation [20,21]. Such substances usually trigger blood coagulation by activating
the so-called extrinsic biochemical pathway [50, Chap. 5B]. We shall assume that the distribution of u in tissue
takes place according to an equation of reaction–diffusion type [29], [30, Chaps. 2, 3, pp. 11–24], [31, Chaps. 9,
11–14.4]:

∂u

∂t
= F(u) + DT �u (4.1)

where function F(u) describes the kinetics of u according to the underlying-tissue pathological process. Equa-
tions as (4.1) are widely used to describe self-sustained spatial distribution of chemical signals [31, Chap. 11],
[29,51], [52, Chaps. 9–10, pp. 268–311] as well as tumor progression [53]. In the following, we shall assume
that the function F(u) is of bistable type. More precisely, we assume that there are two stable states: u = 0 when
the pathological source is not active and u = 1 when it is active. Both stable states are separated by an unstable
one. Specifically, we will take F(u) to be of Zel’dovich and Frank–Kamenenetzki type [31, Chap. 11.6, p. 304],
[34,54]:

F(u) = k1u (1 − u) (u − a) , 0 < a < 1. (4.2)

Notice that for a < u < 1, F(u) > 0 and u increases to converge to the stationary state u = 1; whereas for
0 < u < a, F(u) < 0 and consequently u decreases in this interval to approach towards the stationary state u = 0.
The region in tissue where u > a(F(u) > 0) is assumed to correspond to the location of a tissue pathological source
(TPS). It is known that (4.1), (4.2) is able to produce wave-like solutions of a front type that link the spreading
stable state u = 1 to the receding stable state u = 0, and that the wave velocity is given by vT = √

2DT k1 (0.5 − a)

[34, Chap. 2.2, pp. 18–23]. In most of the numerical experiments to follow, a was assumed to be equal to 0.2,
whereas the value of k1 has been taken as to fit to relevant growth velocities of tissue pathological sources [53].

On the other hand, it will be assumed that the parameter κ in (2.1) is directly proportional to the concentration
of that substance:

κ = kuu. (4.3)

The value of parameter ku may depend upon the nature of any specific pathological substance (u) generated in
tissue; particular values for it will be selected in the next Sect. 4.2. In its turn, the concentration in blood of such a
primary activator u changes according to a general equation of reaction–diffusion–convection type [55]:

∂u

∂t
= −kdu + Du�u − ∇(vu). (4.4)

The geometry of the problem to be considered is depicted in Fig. 2.
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Fig. 3 Profiles u(x, cy , t) of the tissue-agent distribution at different times. The initial distribution was set to unity in a region of radius
Ri and zero elsewhere. a Overcritical initial radius Ri = 0.3 cm. b Subcritical initial radius Ri = 0.2 cm. R(t) is shown for several
times up to 30,000 min

Equations 4.1 and 4.4 are linked by boundary conditions on the vessel wall that separates the tissue where TPS
is located and the vessel under consideration (see Fig. 2). They are taken in the form:

− DT
∂u

∂y

∣∣∣∣
y=−0

= µ
(
u− − u+)

, (4.5)

−Du
∂u

∂y

∣∣∣∣
y=+0

= µ
(
u− − u+)

, (4.6)

where u− (respectively, u+) denotes the limit of u as the vessel wall is approached from the tissue side (respec-
tively, from the vessel side), DT (respectively, Du) represents the diffusion coefficient in tissue (respectively, in
blood), and µ is a permeability parameter. The value of parameter µ will be taken smaller than DT /H (H being
the characteristic thickness of the vessel wall) to reflect the barrier function of the latter.

For bistable-type propagation as that assumed for the primary activator, it is well known that the onset of wave
propagation of the substance thus produced (but not its asymptotic wave speed) depends on the initial conditions.
More precisely, a critical size of the initial perturbation Rcr exists, which is related to the threshold value a in (4.2),
and is such that for an initial size Ri with Ri < Rcr, the pathological area shrinks with time, whereas for Ri > Rcr,
such a region grows in time, and its front asymptotically propagates in a sustained manner as a traveling wave
[55–58], [34, Chap. 2.2, pp. 18–23]. We illustrate this situation by means of the following example. Consider the
case where the center of the TPS is located at the point (x, y) = (cx , cy), and the initial conditions are:

u =
{

1 (x − cx )
2 + (

y − cy
)2 ≤ R2

i

0 (x − cx )
2 + (

y − cy
)2

> R2
i .

(4.7)

Then the spatio–temporal behaviour of variable u satisfying (4.3), (4.4) with a = 0.2 can be numerically computed
and is represented in Fig. 3.

For definiteness, the radius R of the pathological source was selected as the half-width of the region where
u(x, cy, t) > a. The dependence of that radius on time for different values of the initial perturbation Ri is shown
in Fig. 4.

It follows from Fig. 4 that the critical radius Rcr is approximately equal to 0.25±0.05 cm in this case. When
the initial condition (4.7) is such that Ri ≥ Rcr, the size of the region with enhanced concentration of u increases.
The asymptotic velocity of wave propagation is independent of the selected initial value of Ri , as predicted by
theoretical results [34, Chap. 2], [59, Sects. 0.4 and 0.5, pp. 18–26].
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Fig. 4 Radius of tissue
pathological source as a
function of time

Concerning the time scale used in Figs. 3 and 4, a few remarks are in order. In those pictures, tissue pathology
is kept track of for up to 30,000 min, which is more than 20 days. This is a long period when compared with the
time scale of blood coagulation (which is usually of the order of seconds to minutes). However, for many tumors,
20 days represent a very early stage of development, during which they remain fully asymptomatic, and the disease
cannot be detected by standard medical tests. Roughly speaking, what we are considering in Figs. 3 and 4 is the
recent history of TPS activity. As far as blood coagulation induced by that process is activated on a very low level,
we may talk about early stages of blood coagulation, when no macroscopic thrombi are formed yet. On the other
hand, choosing such slow tissue processes as those considered in this work allows us to deal with quasi-stationary
induced microthrombi clouds at each stage of the existence of TPS.

Other choices of time scales are possible indeed. For instance, the situation when the characteristic times of
tissue process and blood coagulation are comparable will be of practical interest when dealing with traumatic tissue
and vessel wall injury, a case which is not addressed in this work.

4.2 A simplified model for intravascular microthrombi detection

A quick glance at (2.1)–(2.5) and (4.1)–(4.6) reveals at once that such a system is quite involved for analytical
treatment. We next obtain a simplified model amenable to mathematical analysis and numerical simulation, while
at the same time retaining substantial features of the process under consideration that could be related to ultrasound
experiments. To proceed further, we assume that the diffusion coefficients do not depend upon polymers length:

Dk = D = const, for all k. (4.8)

While it is natural to expect that polymer diffusivities should depend on polymer size, the simplifying assumption
(4.8) is still a reasonable one when short-length polymers are considered, as is the case for early polymerization
stages of the kind considered in this work. Using (3.1) and (4.8) we may easily to transform (2.4)–(2.5) into a form
which includes the following three equations for the first moments:

Ṁ0 = kg Fgθ − 2kp(M1 + M0)
2 + kb(M1 − M0) − kr M0 + D�M0 − ∇(vM0), (4.9)

Ṁ1 = kg Fgθ − kr M1 + D�M1 − ∇(vM1), (4.10)

Ṁ2 = kg Fgθ + 4kp(M2 + M1)
2 − kb

3
(M3 − M1) − kr M2 + D�M2 − ∇(vM2). (4.11)

As a matter of fact, the transformed system of equations is an infinite one, and is not in a closed form. By
this we mean that the equation for any given moment includes moments of higher order, a fact which comes as
a consequence of the fragmentation terms retained in the model. As we have done previously in [12], we reduce
(4.9)–(4.11) to a well-posed problem by introducing the closure assumption:

M1 M3 − M2
2 = 0. (4.12)
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Notice that (4.12) is exactly satisfied when the whole polymer fraction is distributed in monomers or in polymers
of the same size (monodisperse distributions). In all remaining cases, one always has that the left-hand side in
(4.12) is larger than the right-hand side, so that upon substitution in (4.11), we obtain a subsolution for the second
moment. In particular, by a comparison argument, it then follows that, whenever this subsolution blows up, so does
the second moment itself.

Closure assumptions are widely used in fluid dynamics. A paramount example is provided by turbulent flows,
where the velocity and pressure of a fluid are often divided into their averaged and fluctuating parts. When these are
substituted in the corresponding fluid equations, one ends up with systems involving more unknowns than equa-
tions, since some of the correlation terms appearing therein remain undetermined at any stage. This is the classical
closure problem for Reynolds equations, which has led to an extensive literature in the theory of fluid motions
[60, Chap. 7]. It is usually addressed by imposing closure assumptions, as we have done before.

Taking into account (4.12), we may reduce the system (4.9)–(4.11) to:

Ṁ0 = kg Fgθ − 2kp(M1 + M0)
2 + kb(M1 − M0) − kr M0 + D�M0 − ∇ (vM0), (4.13)

Ṁ1 = kg Fgθ − kr M1 + D�M1 − ∇ (vM1), (4.14)

Ṁ2 = kg Fgθ + 4kp (M2 + M1)
2 − kb

3

(
M2

2

M1
− M1

)
− kr M2 + D�M2 − ∇ (vM2). (4.15)

To perform suitable numerical simulations, these equations have to be supplemented with initial and boundary
conditions. On the vessel walls we impose no-flux conditions, namely:

∂θ

∂y

∣∣∣∣
y=0

= ∂ϕ

∂y

∣∣∣∣
y=0

= ∂ Fg

∂y

∣∣∣∣
y=0

= ∂ M0

∂y

∣∣∣∣
y=0

= ∂ M1

∂y

∣∣∣∣
y=0

= ∂ M2

∂y

∣∣∣∣
y=0

= 0, (4.16)

∂θ

∂y

∣∣∣∣
y=L y

= ∂ϕ

∂y

∣∣∣∣
y=L y

= ∂ Fg

∂y

∣∣∣∣
y=L y

= ∂ M0

∂y

∣∣∣∣
y=L y

= ∂ M1

∂y

∣∣∣∣
y=L y

= ∂ M2

∂y

∣∣∣∣
y=L y

= 0. (4.17)

Boundary conditions on the left boundary of the blood vessel are selected as follows:

θ |x=0 = 0 ϕ|x=0 = 0 Fg
∣∣
x=0 = F0

g Mi |x=0 = 0, i = 0, 1, 2. (4.18)

At the exit of the vessel we assume that no perturbation of the solutions appear in a neighborhood of the right
boundary of the vessel. Under this assumption we may use a linear extrapolation of the solution in the boundary
points, where the solution cannot be found from the equations. Linear extrapolation implies that the second-order
derivatives are set equal to zero:

∂2θ

∂x2

∣∣∣∣
x=Lx

= ∂2ϕ

∂x2

∣∣∣∣
x=Lx

= ∂2 Fg

∂x2

∣∣∣∣
x=Lx

= ∂2 M1

∂x2

∣∣∣∣
x=Lx

= ∂2 M2

∂x2

∣∣∣∣
x=Lx

= 0. (4.19)

This approach is commonly used, for example, in hydrodynamic numerical simulations [61, Chap. 10.3.5, p.459].
As to the velocity of blood flow in the vessel, it is assumed to follow the well-known Poiseuille–Hagen equation

for fully developed laminar flow [60,62,63]:

vx (y) = 4vmax

L2
y

y
(
L y − y

)
, vy = 0, (4.20)

where the parameter L y refers to vessel diameter, and vmax denotes the mid-stream velocity. It is known that
in large vessels of healthy persons (diameter 0.5÷1.5 cm), vmax may reach up to 40–50 cm/s in the aorta, to
remain generally between 5–15 cm/s in other comparatively large vessels; see [64, Chap. 20.4]. However, in many
pathologies dealing with ischemia, blood-flow velocity is drastically lowered, particularly in elderly patients
[65, Chap. 7], [66, Unit IV]. Actually, blood-flow velocity may decrease, for instance, in the case of increased
viscosity that may happen if hematocrite (concentration of red cells) of blood goes beyond its normal value. It is
well known that, if hematocrite is increased up to 56% (instead of its normal proportion of 40%), the viscosity value
increases up to four times [64, Chap. 20.1]. On the other hand, the blood velocity significantly diminishes in vessels
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Table 1 Values of
parameters used in
numerical simulations

Parameter Value Units Ref.

α 2 min−1 [7,8,67]

θ0 5 nM [7,8,67]

χ1 0.05 min−1 [7,8,67]

γ 5 (nM min)−1 [7,8,67]

β 1.5 × 10−3 min−1 [7,8,67]

c 5 nM [7,8,67]

ϕ0 0.05 nM [7,8,67]

χ2 0.35 min−1 [7,8,67]

kg 3 × 10−4 (nM min)−1 [7,8,67]

F0
g 9 × 103 nM [64]

Dθ = Dϕ = Dg = Du = D 2 × 10−5 cm2/min [68]

DT 6 × 10−6 cm2/min [69,70]

µ 2 × 10−4 cm/min

Lx 15 cm

L y 1 cm

Lt 3 cm

containing atherosclerotic plaques. In elderly patients atherosclerosis development often results in stenosis. In many
cases the degree of diminishing of the vessel diameter is up to 60–70%. Since resistance to blood motion is known
to grow as the fourth power of the vessel radius [64, Chap. 20.1], it turns out that such resistance may increase over
40 times under such conditions. Thus, in such cases, at least in the venous part of the human cardiovascular system,
the corresponding blood flow will be significantly slowed down with respect to its normal values. In this work we
shall reduce ourselves to situations when the velocity of blood flow is comparatively slow, viz. of the order of no
more than 10 cm/min.

In the absence of a primary activator (u = 0) blood is in its normal (liquid) state, and there are no activated blood
coagulation factors at all:

θ = ϕ = Fi = 0, i = 1, 2, 3, . . . . (4.21)

The concentrations of pre-existing factors (particularly, of fibrinogen) are set to their basal levels:

Fg = F0
g . (4.22)

The values of the parameters used in numerical simulations are represented in Tables 1 and 2. The value of
parameter α characterizes the speed of overcritical thrombin generation in human plasma. Parameter χ1 refers to
the rate of thrombin inactivation by antithrombin-III molecules. The value of θ0 is determined by the thrombin
destabilization threshold, θcr (θ0 = θcr · (α − χ1)/χ1). Parameter γ reflects the decrease of thrombin production
due to the action of anticoagulant, denoted as ϕ (presumably, activated protein C). The values of β, c, ϕ0 and χ2,
respectively, reflect the properties of anticoagulant activation and inactivation [8,67].

The values of the parameters kr and kb are derived from basal levels of plasmin and factor XIIIa in human blood.
Plasmin is the most important fibrinolytic agent [50, Chap. 8], [64, Chap. 18.6]. In terms of our model, the larger the
concentration of plasmin is, the larger the value of parameter kr should be. On the other hand, factor XIIIa is known
to act as a fibrin-polymer stabilizing factor [50, Chap. 8], [64, Chap. 18.6]. Association of factor XIIIa-molecule
with fibrin-polymer significantly reduces the rate of the fragmentation process (i.e. kb). More precisely, the values
of kr and kb represented in Table 2 refer to averaged values of plasmin and factor XIIIa concentrations in human
blood ([FXIII] = 105 nM, [Plasmin] = 1.5×103 nM). We should point out that the value kb = 3.8 min−1 selected by
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Table 2 Values of parameters used in numerical simulations and their comparison with some literature sources

Parameter Units Weisel et al. [72] Hantgan and Hermans [73] Lewis et al. [71] Parameters selected

kg (nM min)−1 3 × 10−4 0.5 × 10−4 0.65a 3 × 10−4

kp (nM min)−1 4 × 10−3 50 × 10−3 (3 ÷ 60) × 10−3a 15×10−3

kb min−1 3.8b 0.1

kr min−1 7

a The reaction rates were estimated for the process of fibrinopeptide A release only and corresponding polymerization
b The value kb = 3.8 min−1 was estimated for a system where no factor XIII is present

Lewis et al. [71] (see Table 2) has been obtained on the basis of the so-called biochemical “reconstructed” system,
containing no factor XIII.

The values of the rate constants kg and kp used in this paper (see Table 2) have been determined in accordance
with theoretical and experimental data presented in [11,71–73]. In fact, both rate constants depend on the ionic
strength of the solution [71]. The values of kg and kp given in accordance with experiments by Lewis et al. [71]
have been determined on the basis of fibrinopeptide A (FPA) release. However, when fibrinogen converts into fibrin,
not only FPA but also fibrinopeptide B is released [50, Chap. 8]. This is why in the present paper we use slightly
different values of rate constants with respect to values estimated in previous works (see Table 2). On the other
hand, since the characteristic time of fibrinogen restoring is on average of about 102 h [50, Chap. 8], we suppose
that the value of εg is equal to 10−4 min−1.

The characteristic time of primary activator degradation (τd = 1/kd ) varies from a few hours to some days. This
means that the relevant rate constant kd may be taken to be smaller than 10−3 min−1. In the numerical simulations
to follow, the rate constants kd and εg have been assumed to be of the same order and equal to 10−4 min−1. Further
precision in our choice of these parameters will be achieved as follows. For simulation purposes, we shall deal with
vessels of length Lx = 15 cm. Under this assumption, and since the blood velocity is quite small near the vessel
boundaries, full renewal of blood in the vessel would take about 15 min. Thus, any process characterized by a rate
constant lower than 1/(15 min) = 0.7×10−1 min−1 may be considered in quasi-static approximation. This suggests
that the results of our numerical simulations should be insensitive to any variations of the rate constants kd and εg

as long as they remain smaller than 10−2 min−1.
The parameters characterizing the growth of the underlying tissue pathological process (cf. (4.1)) were estimated

using information about tumor progression [53,74]. Many theoretical works assume that the speed of tumor-growth
progression is of the order of 1–2µ/h [53,74]. In fact, pathological sources may grow in size with a speed of up
to 25µ/h. Estimating the speed by means of the formula vT = √

2DT k1(0.5 − a) (see Sect. 4.1), we found that a
relevant value of k1 should be no more than 3.5 × 102 h−1.

Finally, in our setting, the parameter ku connecting tissue and intravascular processes (intensity of initiation of
coagulation by primary activator) has a natural limitation. If it is too large, it leads to very rapid coagulation and
appearance of gelation, i.e., to blow-up of M2 in a finite time. This situation should correspond to macroscopic
thrombi formation, when hydrodynamic characteristics of blood flow are substantially changed. This is beyond the
scope of our model, since our analysis is only intended to deal with stages prior to gelation. For this reason, ku will
be assumed to belong to the interval ku ∈ (103; 104)nM min−1. The range of the values of ku was selected so that
the concentration of the pathological substance u in tissue remains lower than unity; see 4.2.

4.3 Determining the location of a microthrombi cloud

This section contains the results obtained from a simulation of the reduced system consisting of (2.1)–(2.3), (4.4)
and (4.13)–(4.15) in blood, and (4.1), (4.2) in tissue. Parameters were selected as in Tables 1 and 2, and as previously
discussed.
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Fig. 5 The function L(R)

for different values of Mcr .
cy = 0.8 cm. If the left edge
of the microthrombi cloud is
located more proximally
than the point x = cx , the
shift length L is negative.
This explains why for some
values of Mcr the plots
L(R) go beyond zero

The numerical simulation of our model involves coupling two processes with different time-scales. To do this,
we proceed as follows. First, the spatial distribution of a slowly evolving, primary activator (u) is computed in time,
both in tissue and blood vessel. This can be done, since u(x, y, t) does not depend upon variables describing the
blood coagulation status (θ , ϕ, Fg , F1,. . .). To keep track of processes unfolding at this slow time scale, appropriate
time-steps are used for this simulation. After that, the spatial distribution of primary activator u(x, y, t) was con-
sidered as quasi-static (varying in an extremely slow manner in comparison with the blood coagulation process).
Each of these distributions was thus used as a stationary pattern of primary activator distribution in the vessel.
So, for each time moment we solved separately the problem described by (2.1)–(2.5) using in (2.1) the expression
(4.3) with the solution of (4.4) obtained before. The problem described by (2.1)–(2.5) was then simulated until a
stationary state of concentrations in the vessel was obtained (usually about 20 min). This system of equations was
solved numerically on a uniform rectangular mesh with the aid of a Runge–Kutta fourth-order method [75, Chap. 5].
The results described below were obtained for a mid-stream velocity vmax = 10 cm/min, the center of pathological
source in tissue the was set at cx = 3 cm and initial radius of the tissue pathological source was set Ri = 0.3 cm.

Let us briefly describe the results thus obtained. After blood coagulation is triggered by an external activation,
fibrin-monomer intravascular generation occurs. Fibrin polymerization gives rise to an increase of concentrations of
fibrin polymers Fi . According to our current approach, we can follow this process by keeping track of the relevant
moments M2. Indeed, bearing in mind our discussion in Sect. 3, we will consider the second moment as a marker
for the intensity of echo contrast observed by US in blood vessel. More precisely, the microthrombi cloud in blood
flow is defined as the region where

M2 > Mcr (4.23)

for some critical reference value Mcr. As remarked in Sect. 3, Mcr can be related to technical parameters of the
ultrasound transducer used in experimental measurements. We shall assume that no coagulation process, other than
the one we are discussing, is taking place in the vessel under consideration. This allows us to suppose that the basal
value of the second moment is equal to zero there. As a matter of fact, while the concentration of fibrinogen in
blood is comparatively large (about 9,000 nM, or 3 g/l, [64, Chap. 18.6]), the amount of fibrin is negligible, unless
BCC is activated.

In our numerical simulations the microthrombi cloud is usually found near the vessel wall, and is generally
shifted by blood flow downstream along the x-coordinate with respect to the position of the tissue pathological
source (see Fig. 2). To quantitatively describe the position of the microthrombi cloud, we introduce a characteristic
length for its location, the shift-length L . This is defined as the distance along the x-axis from the center of the
x-projection of TPS on the vessel wall, cx to the most proximal edge of the microthrombi cloud (see Fig. 2). We
investigated the relation between the radius of the tissue pathological source R and the shift-length of microthrombi
cloud L . Our results are shown as plots of L versus R in Figs. 5 and 6.

As the radius of TPS grows, the intensity of intravascular coagulation activation rises, the microthrombi
cloud enlarges, and its proximal edge moves closer to the beginning of the vessel. Some curves L(R) obtained
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Fig. 6 L(R) for different values of cy . Left Mcr = 0.13 nM; right Mcr = 1.3 nM

by numerical simulations for given values of Mcr are shown in Fig. 5. One can see that the curves for larger Mcr lie
above the curves corresponding to smaller Mcr. This fact reflects an obvious property of the system considered: the
higher the resolution of the detecting device is, the more fine-grained microthrombi clouds may be detected, and a
closer location of microthrombi cloud to TPS is shown to occur.

In Fig. 6 curves L(R) are shown at different distances of TPS from the vessel wall. It is readily seen that the
closer the TPS is to the vessel, the smaller is L.

We next proceed to derive a relation between the sizes R and L , irrespective of any particular molecular and/or
cellular reasons that might cause the activity of the tissue pathological source. It is clearly seen from Figs. 5 and 6
that each plot of L versus R has at least two different parts: when R is large, this plot appears as a linear one, whereas
for R small, the dependence is nonlinear. The simplest formula that may be used to approximate these data is:

L = A

Rn
− B R + C, (4.24)

where the parameters A, B, C and n depend upon parameters of the problem like Mcr, cy , ku , etc. To estimate
the set of constants appearing in (4.24), we proceed as follows. For each initial experimental curve L(R), we first
approximate its right part (corresponding to large values of R) by means of a linear fit, thus finding the linear formula
L̃ = −B R + C . In this manner the values of B and C in formula (4.24) are selected by means of a least-squares
approximation. We then subtracted L̃(R) from our initial data L(R). Thus we obtained almost zero values in the
right (R large) and non-zero values for R (decreasing for increasing R) for small R when plotting (L − L̃) versus
R. To find the parameters A and n we considered only the range of data obtained for R small, plotted them in a
doubly logarithmic scale and then used again least-squares approximation.

When written in dimensionless form, Eq. 4.24 has a particularly elegant structure:
�1 − �∗

�2 − �∗ = r1 − 1/rn
1

r2 − 1/rn
2
, (4.25)

where � = L/R0, r = R/R0, R0 = n+1
√

A/B, and �∗ = C/R0. The values �1 and r1 correspond to time t1, and
�2, r2 to time t2. The similarity law (4.25) becomes simpler in some limit cases. For instance, if r1, r2 � 1, one
obtains:
�1 − �∗

�2 − �∗ =
(

r2

r1

)n

. (4.26)

It follows from (4.26) that at the very beginning of tissue pathological source development (that is, for small r )
the characteristic dimensionless length of microthrombi cloud shift, �, will decrease in a power-like manner. On
the other hand, when r1, r2 � 1, it follows from (4.25) that:
�1 − �∗

�2 − �∗ = r1

r2
. (4.27)
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Fig. 7 Plots of the dependence of parameters R0 and �∗ in formula (4.25) upon Mcr and cy . Note that the axis Mcr is in logarithmic
scale

This relation shows that, if the TPS is well-developed (that is, for (R/R0) � 1), the relationship between � and r
has a linear form. The dependencies of the parameters �∗ and R0 upon cy and Mcr obtained by means of numerical
simulations are shown in Fig. 7.

5 Discussion and concluding remarks

In this paper we have examined a model for intravascular blood coagulation triggered by an external source, which
is located at a nearby tissue. A key goal of our approach consists in detecting the early stages of such a coagulation
process. These are characterized by the onset of a microthrombi cloud, in which the size of particles of fibrin
polymers is quite small. In this way, one would be able to notice an ongoing pathological process at an earlier
stage than other diagnostic techniques would do. This is particularly relevant, since such pathologies are known to
develop for weeks, months or even years, before any noticeable symptom is felt.

Numerical simulations in our model hint at some general conclusions relating the development of a Tissue Path-
ological Source (TPS) on one side, and the location of a microthrombi cloud in an adjacent vessel, and induced by
the former, on the other. In particular, and for the parameter values selected in Sect. 4, a general similarity law has
been proposed; cf. (4.25). This consists in a relation between L (shift length of the microthrombi cloud appearing
in blood flow), and the size R of the region where TPS unfolds. Using the limit forms (4.26) and (4.27) of that
law, it would be possible to draw conclusions about the stage of the tissue process and its location, in terms of its
distance to the vessel wall. Indeed, if the radius of the TPS is very small, and there is no contact yet with the vessel
wall, activation of blood coagulation is very weak, and the shift of microthrombi cloud L is very large. At this stage
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the plot L(R) decreases very rapidly, much faster than 1/R2. This, together with the dependence of our numerical
results with respect to cy (see Fig. 6) shows that, if information about the flow velocity is available, one can draw
conclusions not only about the size, but also about the depth of the location of TPS. If the approach sketched here
could be fully developed, it might be used in routine non-invasive methods to explore zones of the organism where,
for instance, tumors may be located.

It is now worth to discuss some limitations of this work, as well as possible generalizations thereof. To begin with,
the appearance of microaggregates in blood flow perturbs the initial hydrodynamic conditions. We have assumed
here that this perturbation is small, as in the case of floating admixtures in small concentrations that have little effect
on incoming flow. We have also assumed the diffusion coefficients to be independent on polymer length, a hypoth-
esis that needs to be further explored. Moreover, it would be interesting to extend our analysis for velocity values
vmax in (4.20) significantly larger than those previously considered, to account for a wider range of blood-flow
regimes. Note, however, that many pathological situations are known to exhibit blood-flow velocities considerably
smaller than those occurring in healthy individuals [65,66]. Larger blood velocities lead to faster washing out of
the microthrombi cloud. Therefore, more intensive activation of blood coagulation is needed in that case to make
existence of localized microthrombi clouds possible. Also, additional activation is likely to be required for thrombi
to remain attached to the vessel wall. In this paper we have considered the effect of weak activation sources in blood
coagulation. In this case, we remain far from macroscopic thrombi formation (and related severe thrombosis), and
focus instead on microthrombi formation. In this context, it is interesting to note that, even if a slight shift in blood
coagulation towards a pro-thrombotic state is observed, this may be considered as an indicator of serious damage,
produced by an inflammatory or an oncological process.

On the other hand, some simplifications were made when modeling a tissue pathological process. In particular,
it was supposed that the primary activator spreads in a traveling-wave manner, which implies a linear velocity of
the radius growth. This assumption seems to be valid for some early-stage tumors; see, for instance, [53]. However,
large malignancies may diminish their growth velocity at later stages. As a matter of fact, there are many models
of inflammation and tumor growth to be found in the literature [76–78], and the possibility of incorporating such
approaches in our model deserves, in our opinion, to be explored.

Concerning the sensitivity of our results, a few observations are in order. Our numerical experiments with dif-
ferent sets of parameters have shown that, for a wide range thereof, the character of the L(R)-curves is similar. In
particular, if activation of blood coagulation is weak, the microthrombi cloud is observed only if the value of Mcr

is taken to be rather small. If activation is strong, a cloud can be observed, even for comparatively large values of
Mcr. Related to this, it was shown in Sect. 3 that the microthrombi size that can be observed by US device depends
upon the selected wavelength λ; see (3.6). This means that microthrombi may be observed by US devices, even
in low-polymerized suspensions. Actually, modern US instruments have high sensitivity: they can detect up to a
10−11 part of emitted energy [46, Chap. 10]. This provides a unique chance to detect very early stages of early
microthrombi appearance in vessels; one merely has to tune the frequency in a suitable manner [16]. A similar
remark applies to our model: a microthrombi cloud may be observed, even if blood coagulation activation is weak.
One just needs to select a sufficiently small value of Mcr.

The problem of attenuating tissue processes, when radii change as, for instance, in Fig. 4b for Ri < Rcr is also
of some interest. Since a smaller radius means less activation of blood coagulation, the cloud should then shrink
and L should grow. This suggests a possible way to detect a pulsating tissue pathological process. For instance if in
a recovering organism L increases first and then decreases, a periodic activity of tissue pathological source might
be considered as an hypothesis.

Overcoming some of the limitations sketched above, and exploring some of the possible research directions
sketched, leads to considerable mathematical difficulties. We intend to address such issues in future work.
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